Empirical Methods for Evaluating Maps: Illustrations and Results

W. Jake Thompson & Brooke Nash
Methods for Evaluating Map Structure

• External outcomes
• Classical item statistics
• Unidimensional models
A Framework for Map Evaluation

- Diagnostic Classification Models (DCMs)
- Mastery profiles on the set of assessed skills
- Three methods
 - Patterns of Mastery Profiles
 - Patterns of Mastery Assignment
 - Patterns of Attribute Difficulty
An Illustrative Example

• 3 attribute assessment
• Linear map structure
Map Structure in a DCM Context

![Graph showing Map Structure in a DCM Context](image-url)
Patterns of Mastery Profiles

• Estimate two models
 – Saturated model with all profiles
 – Reduced model with only hypothesized profiles

• Assess model fit
 – Posterior predictive model checks
 – Model comparisons

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Precursor</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Patterns of Attribute Mastery

- Estimate each attribute as a separate 1-attribute DCM (equivalent to LCA)
- Set mastery threshold (0.8)

<table>
<thead>
<tr>
<th>Student</th>
<th>Initial</th>
<th>Precursor</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.97</td>
<td>.85</td>
<td>.43</td>
</tr>
<tr>
<td>2</td>
<td>.86</td>
<td>.52</td>
<td>.13</td>
</tr>
<tr>
<td>3</td>
<td>.92</td>
<td>.89</td>
<td>.83</td>
</tr>
<tr>
<td>4</td>
<td>.88</td>
<td>.65</td>
<td>.85</td>
</tr>
<tr>
<td>5</td>
<td>.55</td>
<td>.70</td>
<td>.33</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student</th>
<th>Initial</th>
<th>Precursor</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Patterns of Attribute Difficulty

• Measure attribute difficulty using classical p-values
• Group similar respondents *a priori*
• Calculate the weighted average p-value for each attribute and group
Case Study: Dynamic Learning Maps

• Each Essential Element (EE) available at multiple levels of depth, breadth, and complexity
 – 5 levels in ELA and mathematics
 – 3 levels in science
• Linkage levels are assumed to follow a linear progression
• Students test on only one linkage level for each EE during the operational assessment
Case Study: Dynamic Learning Maps

- Patterns of Profile Mastery
 - Models fail to converge due to missing data

- Patterns of Attribute Mastery
 - The majority of flags were in ELA
 - More flags for higher linkage level reversals than lower
Case Study: Dynamic Learning Maps

- Patterns of Attribute Difficulty
 - Flags by subject
 - 28 ELA EEs
 - 35 mathematics EEs
 - 0 science EEs
Summary

• Benefits and limitations of each method within the framework
• Wide breadth of methods provides complementary information
• Application to DLM shows insights that can be applied to future test and map development
Ongoing Research

• Continue to refine methods
 – Alternative modeling strategies for Patterns of Mastery Profiles
 – Simulation studies to inform empirical flagging criteria

• Expanding beyond the progression of linkage levels within EEs to the more fine-grained map structure
More Information

@wjakethompson

wjakethompson@ku.edu

wjakethompson.com